
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 1

Review Paper on Software Testing

Yogesh C Chaudhari ,Uttam B Jadhav **, Shorab FShaikh
**

* Computer Department, SND Polytechnic Yeola Nashik

INTRODUCTION

Software testing is more than just error detection;

testing software is operating the software under

controlled conditions, to

(1) verify that it behaves “asspecified”;

(2) to detect errors,and

(3) to validate that what has been specified is what

the user actuallywanted.

1. Verification is the checking or testing of items,

including software, for conformance and

consistency by evaluating the results against pre-

specified requirements. [Verification: Are we

building the systemright?]

2. Error Detection: Testing should intentionally

attempt to make things go wrong to determine if

things happen when they shouldn‟t or things
don‟thappen when theyshould.

3. Validation looks at the system correctness – i.e. is

the process of checking that what has been specified

is what the user actuallywanted.

The definition of testing according to the ANSI/IEEE

1059 standard is that testing is the process of

analysing a software item to detect the differences

between existing and required conditions (that is

defects/errors/bugs) and to evaluate the features of

the software item. The purpose of testing is

verification, validation and error detection in order to

find problems – and the purpose of finding those

problems is to get themfixed.

Most Common Software problems: Inadequate

software performance, Data searches that yields

incorrect results. Incorrect data edits & ineffective

data edits, Incorrect coding / implementation of

business rules, Incorrect calculation, Incorrect data

edits and ineffective data edits, Incorrect processing

of data relationship, Incorrect or inadequate

interfaces with other systems,Inadequate

performance and security controls, Incorrect file

handling, Inadequate support of business needs,

Unreliable results or performance, Confusing or

misleading data, Software usability by end users &

Obsolete Software, Inconsistent processing.

Terminology:

 Mistake – A human action that produces an

incorrectresult.

 Fault [or Defect] – An incorrect step,

process, or data definition in aprogram.

 Failure – The inability of a system or

component to perform its Required function

within the specified performance

requirement.

 Error – The difference between a computed,

observed, or Measured value or condition

and the true, specified, or theoretically

correct value orcondition.

 Specification – A document that specifies in

a complete, precise, Verifiable manner, the

requirements, design,

Definition And The Goal Of Testing Process of

creating a program consists of the following phases:

1. defining aproblem;

2. designing aprogram;

3. building aprogram;

4. analyzing performances of a program,and

5 final arranging of aproduct.

According to this classification, software testing is a

component of the third phase, and means checking if

a program for specified inputs gives correctly and

expected results.

Software testing is an important component of

software quality assurance, and many software

organizations are spending up to 40% of their

resources on testing. For life-critical software (e.g.,

flight control) testing can be highly expensive.

Because of that, many studies about risk analysis

have been made. This term means the probabilitythat

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 2

a software project will experience undesirable events,

such as schedule delays, cost overruns, or outright

cancellation and more about this in. There are a many

definitions of software testing, but one can shortly

define that as:

A process of executing a program with the goal of

finding errors. So, testing means that one inspects

behavior of a program on a finite set of test cases (a

set of inputs, execution preconditions, and expected

outcomes developed for a particular objective, such

as to exercise a particular program path or to verify

compliance with a specific requirement, for which

valued inputs alwaysexist.

Testing is an activity performed for evaluating

software quality and for improving it. Hence, the goal

of testing is systematical detection of different classes

of errors error can be defined as a human action that

produces an incorrect result, in a minimum amount

of time and with a minimum amount ofeffort.

Figure 1: Test Information Flow

 Good test cases - have a good chance of

finding an yet undiscovered error;and

 Successful test cases - uncovers a newerror.

A good test case is one which:

 Has a high probability of finding an error; Is

notredundant;

 Should be “best ofbreed”;

 Should not be too simple or toocomplex.

I. TESTINGMETHODS

Test cases are developed using various test

techniques to achieve more effective testing. By this,

software completeness is provided and conditions of

testing which get the greatest probability of finding

errors are chosen. So, testers do not guess which test

cases to chose, and test techniques enable them to

design testing conditions in a systematic way. Also, if

one combines all sorts of existing test techniques, one

will obtain better results rather if one uses just one

testtechnique.

Software can be tested in two ways, in another words,

one can distinguish two different methods:

1. Black box testing,and

2. White boxtesting.’

White box testing is highly effective in detecting and

resolving problems, because bugs can often be found

before they cause trouble. We can shortly define this

method as testing software with the knowledge of the

internal structure and coding inside the program

.White box testing is also called white box analysis,

clear box testing or clear box analysis. It is a strategy

for software debugging (it is the process of locating

and fixing bugs in computer program code or the

engineering of a hardware device, in which the tester

has excellent knowledge of how the program

components interact. This method can be used for

Web services applications, and is rarely practical for

debugging in large systems and networks . Besides,

in white box testing is considered as a security testing

(the process to determine that an information system

protects data and maintains functionality as intended,

method that can be used to validate whether code

implementation follows intended design, to validate

implemented security functionality, and to uncover

exploitablevulnerabilities.

Black box testing is testing software based on output

requirements and without any knowledge of the

internal structure or coding in the program.In

another words, a black box is any device whose

workings are not understood by or accessible to its

user. For example, in telecommunications, it is a

resistor connected to a phone line that makes it

impossible for the telephone company’s equipment to

detect when a call has been answered a particular

function, but in the financial world, it is a

computerized trading system that doesn’t make its

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 3

rules easily available. In recent years, the third

testing method has been also considered – gray box

testing. It is defined as testing software while

already having some knowledge of its underlying

code orlogic.

It is based on the internal data structures and

algorithms for designing the test cases more than

black box testing but less than white box testing. This

method is important when conducting integration

testing between two modules of code written by two

different developers, where only interfaces are

exposed for test. Also, this method can include

reverse engineering to determine boundary values.

Gray box testing is non-intrusive and unbiased

because it doesn’t require that the tester have access

to the source code. The main characteristics and

comparison between white box testing and black box

testing arefollows.

2.1 . Black Box Testing Versus White BoxTesting

Black BoxTesting:

Performing the tests which exercise all functional

requirements of a program;

Finding the following errors:

 Incorrect or missing functions;

 Interfaceerrors;

 Errors in data structures or external

databaseaccess;

 Performanceerrors;

 Initialization and terminationerrors.

Advantages of this method:

 The number of test cases are reduced to

achieve reasonabletesting;

 The test cases can show presence or

absence of classes oferrors.

White Box Testing:

Considering the internal logical arrangement of

software;

 The test cases exercise certain sets of

conditions andloops;

 Advantages of thismethod:

 All independent paths in a module will be

exercised at leastonce;

 All logical decisions will beexercised;

 All loops at their boundaries will be

executed;

 Internal data structures will be exercised to

maintain theirvalidity.

II. GENERAL CLASSIFICATION OFTEST

TECHNIQUES

In this paper, the most important test techniques are

shortly described, as it is shown Techniques

3.1 . Equivalence Partitioning Summary: equivalence

class

This technique divides the input domain of an

program onto equivalence classes.

Equivalence classes – set of valid or invalid states for

input conditions, and can be defined in the following

way:

1. An input condition specifies a range → one valid
and two invalid equivalence classes aredefined;

2. An input condition needs a specific value → one
valid and two invalid equivalence classes aredefined;

3. An input condition specifies a member of a set →
one valid and one invalid equivalence class are d

efined

4. An input condition is Boolea→n one valid and one
invalid equivalence class aredefined.

Well, using this technique, one can get test cases

which identify the classes of errors.

3.2 . Boundary ValueAnalysis

Summary: complement equivalence Partitioning this

technique is like the technique Equivalence

Partitioning, except that for creating the test cases

beside input domain use output domain.

One can form the test cases in the following way:

1. An input condition specifies a range bounded by

values a and→ btest cases should be made with
values just above and just below a and b,

respectively;

2. An input condition specifies various values → test
cases should be produced to exercise the minimum

and maximumnumbers;

3. Rules 1 and 2 apply to outputconditions;

If internal program data structures have prescribed

boundaries, produce test cases to exercise that data

structure at its boundar.

Comparison Testing Summary: independent versions

of an application In situations when reliability of

software is critical, redundant software is produced.

In that case one uses thistechnique.

Fuzz Testing Summary: random input

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 4

Fuzz testing is often called fuzzing, robustness

testing or negative testing. It is developed by Barton

Miller at the University of Wisconsin in 1989. This

technique feeds random input to application. The

main characteristic of fuzz testing, according tothe

[2 6] are:

 the input israndom;

 the reliability criteria: if the application

crashes or hangs, the test isfailed;

 fuzz testing can be automated to a high

degree.

A tool called fuzz tester which indicates causes of

founded vulnerability, works best for problems that

can cause a program to crash such as buffer overflow,

cross-site scripting, denial of service attacks, format

bug and SQL injection. Fuzzing is less effective for

spyware, some viruses, worms, Trojans, and

keyloggers. However, fuzzers are mos t effective

when are used together with extensive black box

testingtechniques.

Model-based testing

Model-based testing is automatic generation of

efficient test procedures/vectors using models of

system requirements and specified functionality.

In this method, test cases are derived in whole or in

part from a model that describes some aspects of the

system under test. These test cases are known as the

abstract test suite, and for their selection different

techniques have been used:

 generation by theoremproving;

 generation by constraint logicprogramming;

 generation by modelchecking;

 generation by symbolicexecution;

 generation by using an event-flowmodel;

Basis Path Testing Summary: basis set, independent

path, flow graph, cyclomatic complexity, graph

matrix, link weight

If one uses this technique, one can evaluate logical

complexity of procedural design. After that, one can

employ this measure for description basic set of

execution paths.

Based on the software engineer’s intuition and

experience:

1. Ad hoc testing – Test cases are developed basing

on the software engineer’s skills, intuition, and

experience with similarprograms;

2. Exploratory testing – This testing is defined like

simultaneous learning, which means that test are

dynamically designed, executed, andmodified.

Specification-basedtechniques:

1. Equivalencepartitioning;

2. Boundary-valueanalysis;

3. Decision table – Decision tables represent logical

relationships between inputs and outputs (conditions

and actions), so test cases represent every possible

combination of inputs andoutputs;

4. Finite-state machine-based – Test cases are

developed to cover states and transitions onit;

5. Testing from formal specifications–

The formal specifications (the specifications in a

formal language) provide automatic derivation of

functional test cases and a reference output for

checking test results;

6. Random testing – Random points are picked within

the input domain which must be known, so test cases

are based onrandom.

III. CONCLUSION

Software testing is a component of software quality

control (SQC). SQC means control the quality of

software engineering products, which is conducting

using tests of the software system

These tests can be: unit tests (this testing checks

each coded module for the presence of bugs),

integration tests (interconnects sets of previously

tested modules to ensure that the sets behave as well

as they did as independently tested modules), or

system tests (checks that the entire software system

embedded in its actual hardware environment

behaves according to therequirements

 Testing can show the presence of faults in a

system; it cannot prove there are no

remainingfaults.

 Component developers are responsible for

component testing; system testing is the

responsibility of a separateteam.

 Integration testing is testing increments of

the system; release testing involves testing a

system to be released to acustomer.

 Use experience and guidelines to design test

cases in defecttesting.

 Interface testing is designed to discover

defects in the interfaces of composite

components.

 Equivalence partitioning is a way of

discovering test cases - all cases in a

partition should behave in the sameway.

 Structural analysis relies on analysing a

program and deriving tests from this

analysis.

 Test automation reduces testing costs by

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 03 | March - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com Page 5

supporting the test process with a range of

softwaretools.

REFERENCES

1. Stacey, D. A., “Software Testing Techniques”

2. Guide to the Software Engineering Body of
Knowledge, Swebok – A project of the IEEE

Computer Society Professional Practices
Committee,2004.

3. “Software Engineering: A Practitioner’s Approach,

6/e; Chapter 14: Software Testing Techniques”,
R.S.Pressman& Associates, Inc.,2005.

4. Wikipedia, The Free Encyclopedia,http://

http://www.ijsrem.com/

	Review Paper on Software Testing
	Yogesh C Chaudhari ,Uttam B Jadhav **, Shorab FShaikh**

